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Abstract— Recent works introduce general-purpose robot
policies. These policies provide a strong prior over how robots
should behave — e.g., how a robot arm should manipulate food
items. But in order for robots to match an individual person’s
needs, users typically fine-tune these generalized policies — e.g.,
showing the robot arm how to make their own preferred din-
ners. Importantly, during the process of personalizing robots,
end-users leak data about their preferences, habits, and styles
(e.g., the foods they prefer to eat). Other agents can simply
roll-out the fine-tuned policy and see these personally-trained
behaviors. This leads to a fundamental challenge: how can we
develop robots that personalize actions while keeping learning
private from external agents? We here explore this emerging
topic in human-robot interaction and develop PRoP, a model-
agnostic framework for personalized and private robot policies.
Our core idea is to equip each user with a unique key; this
key is then used to mathematically transform the weights of
the robot’s network. With the correct key, the robot’s policy
switches to match that user’s preferences — but with incorrect
keys, the robot reverts to its baseline behaviors. We show the
general applicability of our method across multiple model types
in imitation learning, reinforcement learning, and classification
tasks. PRoP is practically advantageous because it retains the
architecture and behaviors of the original policy, and experi-
mentally outperforms existing encoder-based approaches. See
videos and code here: https://prop-icra26.github.io

I. INTRODUCTION

Generalist policies enable robots to learn multiple tasks
[1], [2]. So far these methods have traditionally been used
in research labs and factories. But we envision a future
where robots enter domestic settings for assisting humans
[3]. For example, consider a robot that is developed to
help in a kitchen. This robot will have some initial policy
π0 that users may want to finetune to match their own
preferences and requirements. For instance, perhaps the robot
knows how to make a hamburger, but individual users prefer
different ingredients, condiments, or even specific ways of
stacking the burger. This finetuning raises privacy concerns:
the manufacturers can share the users’ data collected during
finetuning with third-parties. Consequently, there is increas-
ing demand for exploring new avenues to maintain the
privacy and transparency of robotic agents [4]. Following
this, we come to a fundamental scientific question: how do
we make systems that can learn and adapt to individual end-
users, while still maintaining those user’s privacy?

Privacy in machine learning has traditionally been ex-
amined from two perspectives. First is data privacy, which
concerns safeguarding the sensitive information of individ-
uals represented in the dataset [5]–[8]. Second is model
privacy, which focuses on protecting the learned parameters
of a neural network through techniques such as encryption
or differentially-private learning [9]–[12]. In this work, we
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Fig. 1: In human-robot interaction robots are often finetuned
to personalize to user-specific needs. The users above have
different preferences encoded in their personalized datasets.
When the general model is finetuned to the user’s person-
alized dataset, the resulting policy is not private. Any user
that interacts with the finetuned policy will be able to infer
the user’s preferences. Instead, we propose PRoP: a method
that enables private personalization of robot policies to
humans. PRoP learns to associate user keys with intermediate
transformations of the original policy, causing personalized
and private behavior. When users do not provide a key (or
provide a key not included in PRoP’s training set), they
receive the original, pretrained policy.

adopt a third perspective with respect to robot learning:
ensuring that a trained, personalized robot does not leak
user preference information to other users. Returning to our
example, privacy in this context means that the robot can be
finetuned to learn your preferred way of making a burger
while preventing unauthorized users from accessing those
preferences even if they have access to the trained model.
In practice, this can be difficult to achieve because — if
someone has access to the finetuned model — they can roll-
out this model and infer the previous user’s preference by
watching the robot actions. So how do we safeguard privacy
of user preferences? Our insight is that:

We can use latent values to transform intermediate features
of a network for enhanced privacy and personalization.

Concretely, we leverage keys (Figure 1). A key is any
feature that is unique to the user such as facial structures,
vocal patterns, or a textual password. When finetuning the
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robot under out approach, a user combines their unique key
with the intermediate features of the network and trains it
to output their personalized actions. This unique mechanism
for personalizing robots safeguards user privacy since pref-
erence information remains inaccessible to anyone who does
not have the user’s key. Without careful design, keys may
unintentionally cause the robot to forget its general-purpose
policy. But our technical approach avoids this pitfall — and
preserves the initial model architecture — by leveraging the
key to perform mathematical operations on the intermediate
weights. Our proposed mechanism is not tied to a specific
network architecture or application as we later demonstrate
in our experiments with visual data, imitation learning, MLP
classifiers, and reinforcement learning. Indeed, as shown in
our experiments on robot arms, users can finetune the robot
to make their desired hamburger without losing the robot’s
previously learned behaviors, and without exposing their
preference to other agents. We see this work as a step towards
safe and personalized human-robot interaction.

Overall, we make the following contributions:

Key-based Personalization of Robot Policies. We present
a formulation for key-based personalization of robot control
policies. Under this formalism, the robot learns to personalize
to new users’ specifications while retaining its original, gen-
eral behavior. This formalism is nontrivial to implement in a
learning algorithm, since the original and conditional policies
operate in different domains, i.e., adding a key as the input
requires changing the size of the pre-trained architecture.
Instead, we use keys to transform the intermediate features of
the pre-trained policy, circumventing the need for changing
the architecture size.

Personalized and Private Robot Policies. We present our
implementation of the aforementioned key-based personal-
ization with privacy guarantees. Our method, PRoP (Per-
sonalized and Private Robot Policies) retains the original
network architecture, exhibits behavior of the original robot
policy for unprivileged users, and personalizes to specific
users through a privacy-oriented mechanism. Importantly,
PRoP extends to arbitrary learning rules and architectures
that enables simple, end-to-end training of the model.

Real-world Validation and Empirically Verified Robust-
ness. We empirically test the performance of PRoP in a
collection of controlled simulations and real-world studies,
including Imitation Learning, Reinforcement Learning, Im-
age Classification, and Task Allocation. We further extend
PRoP to more complex settings, such as language prose
personalization and key-based obfuscation.

II. RELATED WORKS

In recent years there has been a variety of research that
analyzes robot-human personalization. This is especially true
in Human-Robot Interaction (HRI): humans can provide
additional information to robots in order to personalize future
interactions. This information may be demonstrations [13],
[14], corrections [15], preferences [16], or any combination
of the three [17], [18].

Within these settings the robot adjusts its parameters
to align with the user’s desired behaviors. However, most
existing research on human-to-robot personalization ignore
the dimension of privacy. While some works exist that
outline approaches to protecting user privacy in HRI [19],
[20], these primarily focus on protecting the data gathered
from users. But even if the robot’s training set is secure,
once a robot’s policy has been personalized, any human
with access to the policy will be able to infer the previous
operator’s preferences. For this reason we focus on privacy
not at the data level — which has been explored — but at
the interaction level, ensuring that user information remains
protected during human-robot interaction.

Personalizing Policies. Robots often learn policies instanti-
ated as neural networks. Once trained on a general dataset,
neural networks can then be finetuned (i.e., personalized)
to new distributions through data aggregation. As previously
mentioned, methods can use diverse data types to personalize
to new users: learning from preferences, corrections, and
demonstrations is standard practice [13]–[16], [18]. The
personalized network is learned end-to-end and will affect
all future users: it is not gated to that particular user. Put
simply, subsequent users that have the fine-tuned model can
potentially infer the preferences of previous users by directly
interacting with the robot.

Large-scale foundational models such as π0 [1] and Cogact
[2] enable researchers to leverage vision and language for
out-of-the-box robot control. These foundational models can
then be finetuned to researcher-specific datasets: such as for
shared-autonomy in robotic assembly [21]. Like their small-
scale counterparts, foundational models are architecture-
specific and need to be fine-tuned end-to-end. Consequently,
they are also vulnerable to leaking user information to
unauthorized future users. Recent works in low-rank adap-
tation (LoRA) [22], [23] offer small-scale personalization
of large-scale models via intermediate transformations (i.e.,
without retraining the original policy’s weights), but they
offer no privacy guarantees. If a third-party acquired the
LoRA weights, then the finetuned behavior would be freely
available and user privacy is compromised. In this work, we
accordingly propose a method that safeguards user privacy by
associating each user with a unique key before applying sim-
ilar transformations. We recognize that foundational models
have a fixed architecture and cannot be easily transferred to
a new domain with more inputs. For example, the domains
of these vision-language-action models (VLA) cannot be
trivially transferred from vision-language to vision-language-
password, where the password gates the personalization of
the VLA. However, our method does not alter the architecture
— instead it works by transforming intermediate features
of the network. Hence, our method can be easily applied
to pretrained models to ensure private personalization while
retaining the original learned behaviors.

Human-Robot Privacy. Existing works on user privacy
in HRI typically deal with securing the user’s underlying
training data: whether that be their demonstrations or demo-



graphic information. [19] presents methods for securing user
datasets for robot learning, and [20] addresses how people
perceive the way their data is utilized in HRI research. On
a lower level, works such as [5], [8], [12] employ (ϵ, δ)-
differentially private learning to assert privacy guarantees on
user-data. Unfortunately, approaches that use differentially-
private learning still struggle with budgeting ϵ for complex
interaction tasks. For example, the state-of-the-art presented
in [12] still exhibits a probability of privacy-failure of
approximately 67.2% on the MNIST classification task.
Furthermore, these methods are not gated: they attempt to
secure training data instead of securing the policy’s output.

Methods that leverage fully homomorphically-encrypted
neural networks [9], [10] may solve our problem, but
they are computationally infeasible. From our testing, fully-
homomorphically encrypted inference can be up to 107 times
slower than the baseline, which is infeasible for real-time
applications in robotics. Instead, we propose that methods
that mimic encryption by obfuscating the intermediate fea-
tures of the policy network can be used for private human-
robot personalization. Overall, our proposed method will
lock the user’s preferences behind their key, and even trying
mathematically similar keys will not cause the network to
output the user’s fine-tuned behaviors.

III. PROBLEM STATEMENT

We are interested in human-robot interaction settings
where a pre-trained robot policy — represented as a neural
network — must be personalized to specific users and remain
unchanged for others. In this manuscript, we interchange
“user” and “human collaborator,” but in practice the “user”
could be another robotic agent.

Dynamics. The robot takes actions u ∈ U according to its
policy π:

u ∼ π (◦ | x) (1)

where x ∈ X is the system state. The system state transitions
in discrete-time with deterministic dynamics according to the
state-transition function f : X × U 7→ X :

xt+1 = f(xt, ut) = f
(
xt, {ut

i}Ni=0

)
(2)

Here t ∈ [0, T ) represents the current timestep. More
generally, the system may transition according to the actions
of multiple agents. In this general case u in Equation (2)
becomes the combined actions of N robots and M humans,
i.e., u = uR1 ∪ uR2 · · · ∪ uRN

∪ uH1 · · · ∪ uHM
, where uRi

is the action of robot i and uHj is the action of human j.

Personalization of Pretrained Policies. We assume that
pretrained policies are represented as neural networks. These
neural networks are parameterized by weights θ which follow
the gradient descent learning rule shown below:

θτ+1 = θτ − α∇θL(θτ ) (3)

where L is the loss function to be minimized by θ. Tra-
ditionally, personalization or finetuning of existing policies
occurs by retraining the policy on a new dataset or loss

function [14], [17], [24], [25]. For example, on a user-specific
level, finetuning the original weights θ0 can cause the general
model to better fit the user’s preferences [17], objectives [24],
[25], or perceptions [14]. Hereafter we refer to this pretrained
robot policy with weights θ0 as π⋆.

Private Personalization. Above we outlined a simple dy-
namical system where the robot’s action u is sampled from
a distribution conditioned on the system state x. However,
for the robot to personalize to multiple users, the robot
policy should instead condition on the system state and some
personal user information. Hence, the personalized policy is
a distribution conditioned on the state and user information:

u ∼ π(◦ | x, k) (4)

where k ∈ K is the personal information that the robot should
condition their behavior on. This personal information is
assumed to be non-fungible. In other words, two separate
users should not be able to imitate each other’s k. This
information can take many forms, such as biographical
information, facial features, fingerprints, or a password. In
this work we treat k as the bit-representation of a user
password. Note that representing the policy as a conditional
distribution on k is critical from a privacy perspective. A
naive implementation of a privately personalized policy is to
have a separate robot policy π0(x), . . . , πN (x) for each user
H0, . . . ,HN . If the developer has access to policy πi, then
they can directly infer the private preferences of the user Hi:
this becomes a clear breach of user privacy.

We seek to learn a robot policy that follows the form of
Equation (4) while leveraging the architecture and weights
of the pretrained policy π⋆. Satisfying both of these require-
ments is non-trivial: we assume that the pretrained policy has
a mapping π⋆ : X 7→ U while the personalized robot policy
has a mapping πp : X ×K 7→ U . Furthermore, the amended
domain should not interfere with the model performance.
For example, performance of the personalized model with an
incorrect key should be as close as possible to the general
policy π⋆. In what follows, we will discuss our method for
privately personalizing a pretrained policy without affecting
its architecture or base behavior.

IV. PERSONALIZED AND PRIVATE ROBOT POLICIES

In this section we introduce PRoP: Private Robot Policies.
PRoP implements Equation (4), integrating user keys into
the original robot policy π⋆ without affecting its architecture.
Towards this end, we leverage encoders that map the human’s
keys into a latent space, and then use the latent encodings
to transform the intermediate features of the robot policy
architecture. Our method is summarized in Figure 2.

Concretely, we train the key encoders ∆i
φi

: K 7→ Zi ∈
∆0:N

φ corresponding to each of the intermediate layers of
the robot policy network. The encoders are parameterized by
φi, and since the latent encoding transforms the intermediate
features of the policy architecture, the size of the latent space
|Zi| is determined by the pretrained policy’s intermediate
architecture at layer i. These encoders are coupled with



the robot’s policy Rϕ : X 7→ UR to perform private
personalization using keys k ∈ K. To ensure personalization
without affecting the architecture of Rϕ, we perform latent
augmentation using an affine transformation at select hidden
layers of Rϕ. This process will be described in more detail
below. It should also be noted that since Rϕ has the same
domain as the original policy, it is possible that a third party
simply would not use the encoders ∆0:N

φ . If this is the case,
then Rϕ should mimic the original pretrained policy π⋆. Put
another way: if a user does not provide a key, then the robot
should behave according to the (general) pretrained policy.

Prerequisites. We assume access to the original objective
J ⋆ and loss function L⋆ used to train π⋆. We addition-
ally assume that π⋆ is parameterized by weights θ that
are updated using backpropagation, like in Equation (3).
We will modify the loss function L⋆ of Equation (3) for
the private personalization of π⋆ to a new, personalized
objective J ′ ̸= J ⋆. Returning to our motivating example,
objective J ⋆ corresponds to the general recipe of the dinner
that the robot policy knows, and the personalized objective
J ′ corresponds to the user’s preferred dinner recipe. Our
method for private personalization of the policy π⋆ should
not modify the architecture of π⋆: we assume that there
are linear layers within the original network architecture
that are publicly exposed or otherwise copyable: such as in
multi-layer perceptrons, transformers, or the feature layers of
convolutional neural networks. This condition is necessary
for our method to apply transformations to the intermediate
features of the original network.

Key Encoding. Each key encoder ∆i
φi

∈ ∆0:N
φ is a multi-

layer perceptron with weights φi and final activation function
tanh. The key encoder takes in the user-specific key and
maps that to a latent value used to personalize the network.
The key encoder operates across users and is unique to a
specific hidden layer of the policy network Rϕ. The output
size of each key encoder should correspond with the output
dimension of select hidden layers of the neural network Rϕ.
For example, take Rϕ to be a neural network with two layers,
hidden dimension a, and nonlinear activation function f . In
this case, |∆0:N

φ | = 1 and |Z1| = a. The key encoding
performs a intermediate affine transformation of the policy
network as follows. Take Wi and bi to be the weight and
bias of the i-th layer of Rϕ and ∆i

φi(k) = δi. The resulting
output of the i-th layer is:

zi+1 = f (Wi diag (δi) zi + bi) (5)

Applying this transformation directly to the policy network’s
hidden layers modifies the relationship between the weights
and output of the policy, enabling us to utilize the archi-
tecture of π⋆ while conditioning the policy on a specific
user’s key. Additionally, if we omit δi, then the policy Rϕ

will resolve to default behavior: ideally, the pretrained policy
π⋆. When rolling out Rϕ, we will perform Equation (5) for
specific hidden layers. We annotate this process as Rϕ∪φ :
X ×K 7→ UR. Note that — as previously stated — an agent
may run the PRoP policy without using a key. To unify
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Fig. 2: Schematic diagram of PRoP. Our method for private
personalization of robot policies uses a key encoder to
augment the intermediate features of the neural network Rϕ.
Particularly, at the intermediate layer i of the original policy
π⋆, we apply an affine transformation to the features zi using
Equation (5). This transformation is shown in the top row.
It is noted that this augmentation does not need to occur
at every interstitial layer of the neural network: we find
in our controlled simulations that a single application of
the PRoP mechanism is sufficient for personalization. When
combined with a conditional, personalized loss function
(shown in bottom right), we find that PRoP outperforms
baseline algorithms in terms of privacy and personalization
without changing the architecture of the original policy π⋆.

this, we assume that the space K contains a null element
∅. When the null element is used as an input to PRoP,
diag (δi) = I by convention since Wizi = WiIzi trivially
holds. This ensures that if the policy is used without a key,
it will follow the default behavior of π⋆. This transformation
is visually annotated in Figure 2.

Policy. Now that we have a structure for PRoP, our next step
is to update the weights ϕ and φ to facilitate private person-
alization. Before augmenting PRoP’s policy, we ensure that
Rϕ has the same weights as the pretrained policy π⋆ (i.e., we
ensure that ϕ = θ). Recall that we have access to the original
loss function L⋆ and objective J ⋆. Here we introduce an
auxiliary loss function L′ that is identical to L⋆, except that
it operates on Rϕ∪φ using the latent multiplication shown in
Equation (5) for a particular key k.

Now we begin training PRoP. Given a user with key k′ and
preferences encoded in their objective J ′, we can update the
policy and key encoders using the following loss function:

L (ϕ, φ) = L′
k′,J ′ (ϕ, φ) +

∑
k∈K−{k′}

L′
k,J ⋆ (ϕ, φ) (6)

Note that ∅ ∈ K, so the resulting policy Rϕ∪φ should mimic
π⋆ when the key is omitted from Equation (5). The loss
function in Equation (6) assumes that there is a single key
that should yield personalized behavior; operating on a set
of personalized behaviors is not very different. Assuming
a collection of users each with keys k′i ∈ K′ ⊂ K and



objectives J ′
i ̸= J ⋆, we use the following loss function:

L (ϕ, φ) =
∑
k′∈K′

L′
k′,J ′

i
(ϕ, φ) +

∑
k∈K−K′

L′
k,J ⋆ (ϕ, φ) (7)

In practice, enumerating over K − K′ in Equations (6) and
(7) is intractable due to the size of K. For an extreme
example: if K represents the space of 8 character passwords
and evaluating L′ takes 1 ns, a single epoch of Equation (7)
would take more than 500 years (assuming single-threaded
execution). To tractably approximate Equation (7), we use
an inductive loss function over specific subsets of K:

K1 = {k | k ∈ K −K′,∃k′ ∈ K′ s.t. ∥k − k′∥ ≤ ϵ}
K2 = {ki | ki ∼ U [K −K′] , i ∈ [1, Nk]}+ {∅}

L (ϕ, φ) =
∑
k′∈K′

L′
k′,J ′

i
(ϕ, φ) +

∑
k∈K1∪K2

L′
k,J ⋆ (ϕ, φ)

(8)
where ϵ and Nk are hyperparameters chosen by the designer.
Equation (8) resembles an inductive loss over L′ and ap-
proaches the intractable loss function shown in Equation (7)
as both ϵ → ∞ and Nk → ∞. Note that in this work we use
K = {0, 1}N , but PRoP is not restricted to this key space.

Implementation Details. Above we state that PRoP uses
a collection of encoders to privately personalize the robot
policy to different users. However, as we will empirically
show, using a single key encoder and applying a single
intermediate transformation for a small-sized robot policy
(e.g., 100k-param) is sufficient. Additionally, as we will
show in Section V and Appendix A, PRoP can be used
without a pretrained policy π⋆: the weights ϕ and φ can be
learned simultaneously in an end-to-end manner. A sample
implementation of PRoP is available here.

V. EXPERIMENTAL VALIDATION

To assess how our method performs compared to existing
literature, we conducted an ensemble of experiments across
simulated environments. The baselines we chose for these
experiments are standard architectures commonly seen in
human-robot interaction. The simplest baseline (MLP) is an
end-to-end multi-layer perceptron that has an input dimen-
sion of |X |+ |K|. The hidden dimension of the MLP is cho-
sen such that the number of trainable parameters is as close
as possible to the number of parameters that our method uses.
The second baseline (CVAE) is the conditional-variational
autoencoder presented in [26]. In preliminary testing we
implemented two variants: conditioning on the state x and
conditioning on the key k. We found that conditioning on the
state was far more performant; we present those results in this
section. Finally, we compare these baselines to our approach
for personalizing to humans presented in Section IV (PRoP).
The environments used are shown in Figure 3.

A. Imitation Learning

In this experiment we prepare a dataset of N expert
demonstrations D = {(x, u)0, . . . , (x, u)N}. The state x ∈
R2n is the robot position concatenated with a goal position
g ∈ Rn. The environment follows linear state feedback

dynamics. The personalized objective has a modified set of
expert demonstrations that navigate to a different position in
the environment parameterized by g. Instead of the expert
robot moving to g, it moves to a position in the environ-
ment offset g by an arbitrary but fixed affine transform.
For these environments we chose a key size of 128 (i.e.,
K = {0, 1}128). To ensure that the additional weights φ
do not give PRoP an advantage, each model architecture is
standardized such that the total parameter count is about 50k.

B. Reinforcement Learning

In the second simulated environment we conducted re-
inforcement learning simulations in the PandaGym envi-
ronment [27] using a PPO-style Actor-Critic architecture
and loss function [28] with joint-space control. To improve
convergence of all methods, we modified the reward function
for the Reach environment as follows:

R(x, u) ∝ ∥xee
R − g∥ − ∥f(x, u)ee

R − g∥ (9)

We have found that if the reward function is not normalized,
PPO-style critic algorithms fail to converge over receding
horizons regardless of architecture. Similar to the Imitation
Learning environment, we modify the location of g according
to an arbitrary but fixed affine transformation that is constant
for a particular experiment. We normalize the network archi-
tecture to have approximately 100k weights for each method
and use a key size of 128.

C. Image Classification

To assess how our method extends to settings without
a state-transition, we conducted a classification test on the
MNIST dataset [29]. As is standard in image classification,
the default (i.e., unpersonalized) behavior is to minimize the
cross-entropy loss of the predicted label with the ground-
truth label. The personalized behavior is to predict the
ground-truth label l subject to an offset according to (l + k)
mod 10 where k ∈ Z+ is an arbitrary but fixed positive inte-
ger. Each model architecture is a sequence of convolutional
layers with batch normalization, followed by a sequence of
linear layers for feature extraction.

D. Results

Across all simulations and architectures, optimal perfor-
mance is comprised of two elements: (a) alignment with
the user’s personalization when the key is correct, and (b)
alignment with π⋆ when the key is incorrect. With this in
mind, we present the results of our controlled simulations
in Figure 4. Results are averaged over 100 simulated exper-
iments and the vertical bars represent standard-error. Each
column of Figure 4 corresponds to a different key k. The
first column corresponds to a randomly sampled key, i.e.
k ∈ K1. The second column corresponds to a key that is
one bit removed from the user’s key, i.e. k ∈ K2. The final
column corresponds to the user’s key. An optimal method
would have high performance for the general objective in the
first two columns and poor performance in the third column.
Likewise, an optimal method would have high performance
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Fig. 3: A depiction of our simulated environments presented
in Section V. (A) In Imitation Learning, the robot should
learn to take actions in the general and personalized datasets,
depending on the key. (B) In Reinforcement Learning, the
robot should learn to move to different goals depending
on the key. (C) In Image Classification, the policy learns
different labels depending on the key.

in the third column for the personalized objective and poor
performance in the first two columns.

We find that PRoP has a statistically significant perfor-
mance edge in all environments and keys when compared
to baselines (p < 0.05). Notably, keys that are one-bit away
from the correct key are less likely to leak user information
than baselines. This distinction is incredibly important: if
the rate of information leakage monotonically decreases with
the number of bits incorrect in the key and the information
leakage for close keys is low, then the model is difficult to
attack. We find that in this critical point, our method exhibits
far less information leakage than baselines. In simulations
with relatively low dimensionality (e.g., Imitation Learning
(3-DoF)), PRoP generally performs on-par with a multi-layer
perceptron model. However, as the dimensionality increases,
the performance gap grows. In Reinforcement Learning, the
performance gap for correct keys between PRoP and MLP
is substantial. Implementation details and further statistical
analyses are available on our project site.

VI. USER STUDY

The controlled simulations in Section V suggest that our
method successfully personalizes robot policies to specific
user behaviors in a private manner. It surpasses baseline
performance while conforming to the architecture of the
pretrained network. To evaluate how PRoP performs with
real users, we next conducted an in-person user study with
N = 12 participants. This task was a mock kitchen environ-
ment. The robot was tasked with assembling different meals,
and the order of ingredients was personalized to different
users according to their password.

Experimental Setup. Participants operated in a mock
kitchen environment alongside a Universal Robotics UR-10
robotic manipulator with Robotiq gripper. Each participant
was tasked with logging into a website using their chosen
username and password, then ordering a personal sandwich
order from a collection of ingredients. Upon receiving their
order, three policies were trained: CVAE, MLP, and PRoP.
Each policy then assembled sandwiches in the real-world
with bit-represented keys: the user’s key, a randomly sampled
key, and a key that differed from the user’s by one bit.
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Fig. 4: Results from our controlled simulations without pre-
trained policies. For each experiment, the performance of the
methods with respect to the general objective is shown in the
first row and the performance with respect to the personalized
objective is shown in the second row. (A): In Imitation
Learning, the objective is to minimize mean-squared error
between predicted and actual actions. (B): In Reinforcement
Learning, the objective is to maximize normalized reward.
(C): In Image Classification, the objective is to maximize
classification rate. Each column corresponds to a different
key, with left corresponding to randomly sampled keys,
center to the user’s key with one bit flipped, and the final
column to the user’s key. An asterisk indicates significance
(p < 0.05) and an arrow indicates the desired trend.

https://prop-icra26.github.io


PRoPCVAE MLP

2.5

2.0

1.5

1.0

0.5

0.0

P
er

so
n

al
iz

at
io

n
*

1.0

0.8

0.6

0.4

0.2

0.0

P
ri

v
ac

y
 L

ea
k

ag
e

*

Fig. 5: Results from our in-person user study. PRoP outper-
forms baselines in terms of average privacy leakage and per-
sonalization. Note that personalization should be high, while
privacy leakage should be low. Error bars show standard
error and an asterisk (*) indicates significance (p < 0.05).
(Left) PRoP enables better personalization than baselines
while using a similar number of learnable parameters. This
metric is evaluated using Equation (10). (Right) Likewise,
PRoP is less prone to information leakage than baselines.
This metric is evaluated using Equation (11).

Participants and Procedure. We recruited 12 participants of
our community (average age 23±3.4). Of the 12 participants,
3 did not have experience with robotics and 8 did not
have experience with robot learning. Participants received
monetary compensation for their time and provided informed
written consent (IRB #ANON).

We leveraged a between-subjects design where every
participant provided an order and observed the interaction
between their key and two randomly sampled alternative
keys from previous users. The user’s goal was to correctly
predict which order corresponded to their key. Participants
were never told which order corresponded to their key nor
what method was in operation.

Dependent Measures. We recorded the key, sandwich order,
states, and actions at each timestep during the interaction. To
assess performance, we consider an interaction correct if the
order corresponds to the key’s order in the unified dataset
{(kuser, ouser} ∪ {(k1, o1), . . . , (kN , oN )} where k is the key
and o is the order. Before training we ensure that ouser and
kuser do not exist in the default dataset. We use the following
metric as a proxy to performance:

Score =
I (k = kuser ∧ o = ouser)

+I (k ̸= kuser ∧ o = ok)
(10)

where I is the indicator function. The Score metric is
higher when the network provides the correct order for the
corresponding key and is lower when the network fails to
personalize to the user’s key. An optimal value for this metric
is 3 (since we roll-out each method for 3 different keys). We
use a similar metric as a proxy to information leakage:

Privacy =
I (k = kuser ∧ o ̸= ouser)

+I (k ̸= kuser ∧ o = ouser)
(11)

Analogous to Equation (10), this metric is maximized when
the user’s order is leaked: for example, if the order is present

for multiple user keys. Likewise, if the user receives an order
for their key that is not their intended order, this metric
increases. An optimal value for this metric is 0.

Hypothesis. We had two hypotheses for this user study:
H1. PRoP will personalize more effectively than
baselines.
H2. The personalization that PRoP provides will
be more private than baselines.

Results. We used a key size of 32 for this user study. The
results from our in-person user study are summarized in
Figure 5. To assess H1, we consult the Score metric from
Equation (10). We find that PRoP outperforms baselines in
terms of average Score across interactions, although this per-
formance improvement is not statistically significant across
all methods Figure 5 (Right). Likewise, for H2, we consult
the Privacy metric from Equation (11). From Figure 5
(Left), we can see that PRoP leaks less user information
to alternative keys, and is significantly lower than CVAE
(p < 0.05). For further analysis, consult our project site.

VII. CONCLUSION

In this manuscript we present PRoP: a method to per-
sonalize pretrained neural network policies for new users.
PRoP preserves the architecture and behavior of the original
network while enabling personalization to specific users
in a private fashion. Our method can also be used in an
end-to-end manner — without any pretrained model. In
imitation learning, reinforcement learning, classification, and
in real-world user studies, PRoP outperforms baselines in
terms of personalization and privacy. Prior HRI literature
achieves personalization, but PRoP is unique in that it
provides personalization, preserves pretrained models, and
prevents other agents from learning the user’s preferences.
Through our simulated and real-world experiments we find
that PRoP performs well across various applications such
as imitation learning, reinforcement learning, image classi-
fication. PRoP’s mechanism for intermediate augmentation
also shows promise in large-language models and for weight
obfuscation; see Appendixes A and B for details.
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APPENDIX

A. Personalized Language Prose

Here we detail an extension of this method to transformer-
style architectures with a simple example. By applying sep-
arate intermediate augmentation (Equation (5)) at each key,
value, and query encoder of separate transformer blocks, we
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Fig. 6: Additional usage of PRoP in controlled environments.
(Top) PRoP used in a language setting with a Transformer
Decoder. Through PRoP we can personalize the output of
a transformer decoder into different styles. Here we show
Shakespearean text rewritten in the prose of Mark Twain.
(Bottom) PRoP used for policy obfuscation. Instead of keys
corresponding to different personalizations, keys gate the
policy of the network entirely. Without the correct key, the
network outputs noise. (Bottom, Imitation) PRoP used for
obfuscated imitation learning in a go-to goal task akin to
Section V-A. (Bottom, Classification) PRoP used for an
obfuscated image classification task. Here we train on the
MNIST dataset as in Section V-C. Across environments, we
can prevent unauthorized users from accessing the behavior
of the policy without the proper key.

are able to personalize the output of a transformer-decoder
model. We present results trained on text from Shakespeare
and Mark Twain in Figure 6 (Top) using a standard mean-
squared-error loss function.

B. Obfuscating Weights

As large-scale intelligence models become more main-
stream, companies are careful to keep their network weights
private. In this context, it is possible that their private intel-
lectual property to leak outside of their intended population
(e.g., if they were shared online accidentally). Existing en-
cryption methods for keeping these network weights succeed
until inference: at this point, the network weights must be
decrypted. We propose securing the network weights at the
lowest level possible: learning a policy that is noisy when
the key is incorrect (k ̸= k′) and correct otherwise (k = k′).
Instead of targeting a default policy π⋆ and a personalized
policy π′, we use our method to target uniform distributed
noise when the key is incorrect, and the default policy π⋆

otherwise. Implementation details can be found here. A few
simple simulations of this obfuscation approach for hiding
the policy are shown in Figure 6 (Bottom).
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